Compressed Support Vector Machines

نویسندگان

  • Zhixiang Eddie Xu
  • Jacob R. Gardner
  • Stephen Tyree
  • Kilian Q. Weinberger
چکیده

Support vector machines (SVM) can classify data sets along highly non-linear decision boundaries because of the kernel-trick. This expressiveness comes at a price: During test-time, the SVM classifier needs to compute the kernel innerproduct between a test sample and all support vectors. With large training data sets, the time required for this computation can be substantial. In this paper, we introduce a post-processing algorithm, which compresses the learned SVM model by reducing and optimizing support vectors. We evaluate our algorithm on several medium-scaled real-world data sets, demonstrating that it maintains high test accuracy while reducing the test-time evaluation cost by several orders of magnitude—in some cases from hours to seconds. It is fair to say that most of the work in this paper was previously been invented by Burges and Schölkopf almost 20 years ago. For most of the time during which we conducted this research, we were unaware of this prior work. However, in the past two decades, computing power has increased drastically, and we can therefore provide empirical insights that were not possible in their original paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Comparative Study of Extreme Learning Machines and Support Vector Machines in Prediction of Sediment Transport in Open Channels

The limiting velocity in open channels to prevent long-term sedimentation is predicted in this paper using a powerful soft computing technique known as Extreme Learning Machines (ELM). The ELM is a single Layer Feed-forward Neural Network (SLFNN) with a high level of training speed. The dimensionless parameter of limiting velocity which is known as the densimetric Froude number (Fr) is predicte...

متن کامل

Mining Biological Repetitive Sequences Using Support Vector Machines and Fuzzy SVM

Structural repetitive subsequences are most important portion of biological sequences, which play crucial roles on corresponding sequence’s fold and functionality. Biggest class of the repetitive subsequences is “Transposable Elements” which has its own sub-classes upon contexts’ structures. Many researches have been performed to criticality determine the structure and function of repetitiv...

متن کامل

STAGE-DISCHARGE MODELING USING SUPPORT VECTOR MACHINES

Establishment of rating curves are often required by the hydrologists for flow estimates in the streams, rivers etc. Measurement of discharge in a river is a time-consuming, expensive, and difficult process and the conventional approach of regression analysis of stage-discharge relation does not provide encouraging results especially during the floods. P

متن کامل

Face Recognition using Eigenfaces , PCA and Supprot Vector Machines

This paper is based on a combination of the principal component analysis (PCA), eigenface and support vector machines. Using N-fold method and with respect to the value of N, any person’s face images are divided into two sections. As a result, vectors of training features and test features are obtain ed. Classification precision and accuracy was examined with three different types of kernel and...

متن کامل

Efficient Feature Subset Selection for Support Vector Machines

Support vector machines can be regarded as algorithms for compressing information about class membership into a few support vectors with clear geometric interpretation. It is tempting to use this compressed information to select the most relevant input features. In this paper we present a method for doing so and provide evidence that it selects high-quality feature sets at a fraction of the cos...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1501.06478  شماره 

صفحات  -

تاریخ انتشار 2015